बैनर
घर

उच्च और निम्न तापमान परीक्षण कक्ष

उच्च और निम्न तापमान परीक्षण कक्ष

  • High-Temperature Test Chamber: Core Features and Application Fields Analysis
    Dec 22, 2025
        As a core environmental reliability testing equipment, the high-temperature test chamber evaluates the durability, stability and service life of materials, components and complete machines under high temperatures by simulating extreme environments. It is key to product R&D, quality inspection and certification. Its core value lies in replacing natural aging with controlled laboratory conditions, shortening test cycles, identifying potential defects accurately, and providing a scientific basis for quality optimization. Below is an analysis of its core features and main applications from a professional perspective. I. Core Technical Features     The technical advantages of the high-temperature test chamber focus on three aspects: temperature control accuracy, environmental simulation authenticity and safety reliability, specifically as follows: 1. Precise Temperature Control and Uniformity: Adopting PID microcomputer automatic control algorithm with high-precision platinum resistance sensor, the temperature control accuracy reaches ±0.5℃, and the no-load internal temperature uniformity is within ±1.0℃. The forced air circulation system (high-temperature resistant motor + multi-wing wind wheel) enables rapid heat diffusion, avoiding local temperature differences affecting test results. 2. Efficient Heating and Energy-Saving Insulation: Equipped with honeycomb stainless steel heating tubes for fast heating, high thermal stability and long service life. The chamber uses SUS#304 stainless steel inner lining and high-density imported rock wool insulation, combined with heat-resistant and corrosion-resistant silicone seals, effectively reducing heat loss, lowering energy consumption and ensuring high-temperature stability. 3. Intelligent Operation and Data Traceability: Supports custom temperature curves for complex processes such as step heating and constant temperature maintenance. High-end models integrate multi-parameter monitoring modules to synchronize temperature and voltage data; some are equipped with image recognition systems for automatic sample aging analysis, reducing human error. 4. Comprehensive Safety Protection: Built-in over-temperature protection, overload power-off and electric heating over-current protection. It automatically cuts off heating power and alarms when temperature exceeds the set range, with explosion-proof door locks and other structural designs ensuring test safety and reliability.   II. Main Application Fields The high-temperature test chamber is widely used in high-end manufacturing and scientific research fields such as electronics, automotive and aerospace, mainly serving product reliability verification needs: 1. Electronic and Electrical Industry: Used for high-temperature aging testing of chips, capacitors and resistors to evaluate performance attenuation. Conducts high-temperature operation tests on PCBs, mobile phones and servers to verify functional stability under extreme temperatures and troubleshoot loose welds and short circuits. 2. Automotive Industry: Simulates summer in-vehicle high temperatures for durability testing of on-board electronics (control units, sensors, displays) in engine compartments. Tests heat resistance and weather resistance of automotive interior materials and external coatings to ensure vehicle reliability in extreme climates. 3. Aerospace and Military Industry: Simulates high-altitude aerodynamic heating or ground high temperatures to test the high-temperature stability of aircraft components, electronics and spacecraft thermal insulation materials. Verifies military equipment reliability under extreme high temperatures per national military standards, avoiding high-temperature-induced structural cracking and performance failure. 4. New Energy and Photovoltaic Field: Performs high-temperature charge-discharge and storage safety tests on lithium battery modules and solar inverters. Simulates desert high temperatures per IEC 61215 to evaluate solar panel efficiency attenuation and ensure long-term outdoor stability. 5. Pharmaceutical and Material Research: Tests the stability and degradation rate of drugs and vaccines under high temperatures to determine transportation and storage shelf life. Evaluates high-temperature performance of new plastics, composites and architectural coatings, analyzing thermal stability and strength changes to support material selection and R&D.   III. Summary With precise environmental simulation and comprehensive reliability verification capabilities, the high-temperature test chamber is a core component of modern industrial quality control systems. Its development trend is towards multi-environment collaborative simulation (high temperature + humidity + vibration) and intelligent data analysis, which will further improve test efficiency and accuracy, providing stronger support for high-end product R&D and quality assurance across industries.
    और पढ़ें
  • Fundamental Differences Between Composite Salt Spray Test Chamber and High-Low Temperature Test Chamber
    Dec 15, 2025
    1. Core Test Purpose     The composite salt spray test chamber centers on simulating salt spray corrosion environments, with optional integration of temperature and humidity conditions. It is mainly used to test the corrosion resistance of materials, components and finished products, especially for evaluating the durability of coating/plating protection systems and the reliability of products in marine or high-salt industrial environments.     The high-low temperature test chamber focuses on simulating extreme temperature and temperature change environments. Its core goal is to verify products’ temperature resistance, structural stability and performance consistency under high/low temperature and temperature cycle conditions, such as testing the working status of electronic components, thermal expansion/contraction resistance of metal parts, and temperature-induced aging of plastic components. 2.Test Environment Composition     The core environmental medium of the composite salt spray test chamber is salt spray (typically formed by atomizing 5% sodium chloride solution). It can achieve cyclic composite environments including salt spray, constant temperature and humidity, and drying stages. Some models also control key parameters like salt spray deposition rate and spray pressure, with the overall environment built around "corrosion triggers".     The high-low temperature test chamber’s core is temperature (covering -70℃~150℃ or a wider range). Some models integrate humidity control (high-low temperature and humidity test chambers). It precisely regulates internal temperature and humidity via compressors, heaters, humidifiers and other components, without salt spray-related media or systems. 3.Applicable Test Objects & Industries     The composite salt spray test chamber is mainly for products requiring corrosion protection such as auto parts, hardware electroplated parts, marine engineering equipment, outdoor communication devices, and aerospace fasteners. It is widely used in automotive, shipbuilding, hardware, and electronic protection industries.     The high-low temperature test chamber has a broader scope, covering all products that need temperature adaptability verification, including electronic appliances, semiconductor components, new energy batteries, instruments, military equipment, and household appliances. It is a basic environmental testing device for electronics, new energy, military, and consumer electronics industries. 4. Core Technical Structure     The composite salt spray test chamber is equipped with a salt spray generation system (spray tower, brine tank, nozzle) and corrosion fluid recovery/neutralization devices. Its chamber body requires high corrosion resistance (usually made of PVC, PP or special stainless steel) to prevent self-corrosion by salt spray.     The high-low temperature test chamber’s core is a temperature control system (compressor, condenser, evaporator, heater). Models with humidity function include humidification and dehumidification modules. The chamber focuses on thermal insulation (with polyurethane foam insulation layer) and has no special corrosion-resistant design. 5.Test Evaluation Indicators     Key evaluation indicators for composite salt spray tests are corrosion levels, such as blistering/peeling area of coatings, rust grade of base metals, and the correlation between test duration and corrosion failure time.     Evaluation indicators for high-low temperature tests focus on product performance and structural changes, including functional normality under extreme temperatures, parameter drift range, deformation/cracking of structural parts, and mechanical property attenuation of materials.
    और पढ़ें
  • What do you know about test chamber safety protection settings?
    Dec 04, 2025
        Test chambers, as core equipment for environmental reliability testing across industries such as electronics, automotive, aerospace, and new energy, rely on a multi-dimensional, redundant safety protection system to ensure long-term operational stability, personnel safety, and the integrity of test samples and equipment. Beyond basic safety guarantees, these protection mechanisms are designed to adapt to complex test scenarios and extreme environmental conditions. Here’s a professional and detailed breakdown of the core protection settings: 1. Refrigeration System Protection Compressor protection: Equipped with overpressure, overheating, and overcurrent triple protection mechanisms. Real-time monitoring of operating pressure, exhaust temperature, and working current prevents compressor burnout, cylinder scuffing, or seal damage caused by abnormal conditions such as refrigerant leakage, pipeline blockage, or voltage fluctuations. Refrigerant protection: Integrated high/low pressure switches and overload protection devices continuously monitor the refrigerant circulation system. When pressure exceeds the safe threshold or the system is overloaded, the device automatically cuts off the corresponding circuit and triggers an alarm, ensuring stable refrigerant flow and avoiding system damage due to pressure anomalies. 2. Test Area Protection Multi-layer over-temperature protection (redundant design): 1st layer: Adjustable high/low temperature over-temperature protection, dynamically linked to the set operating control temperature. When the test area temperature deviates from the set range by a preset value, the system automatically adjusts the heating/cooling module or pauses operation to prevent sample damage. 2nd/3rd layers: Independent electronic high-temperature over-temperature protection devices (double redundancy). Directly connected to the power supply circuit, these devices bypass the main control system to cut off power immediately if the 1st layer protection fails, eliminating potential fire hazards or equipment damage caused by excessive temperature. Fan motor overcurrent protection: Monitors the operating current of the test area circulation fan. If the motor jams, wears, or experiences current surges due to other faults, the protection system triggers an alarm and cuts off power to avoid motor burnout and ensure uniform temperature distribution in the test chamber. Fault alarm system: Integrates sound and light alarms with a digital display. When abnormalities occur (e.g., over-temperature, water shortage, or sensor failure), the system immediately cuts off the relevant power supply, activates the alarm, and displays the specific fault cause on the control panel for quick troubleshooting. Active water shortage reminder: For humidity-controlled test chambers, a real-time water level monitoring sensor in the humidity water tank triggers an audible and visual alarm when the water level is too low. The system pauses the humidity control function to prevent dry burning of the humidifier and ensure the stability of the humidity control system. Dynamic high/low temperature protection: Real-time adapts to the set test parameters (temperature range, rate of change). During rapid temperature rise/fall or extreme temperature tests, the protection system dynamically adjusts the safety threshold to avoid false triggers while ensuring comprehensive protection against temperature anomalies. 3. General Electrical Protection Main power supply protection: Equipped with phase sequence and phase loss protection devices. Automatically detects the phase sequence and integrity of the three-phase power supply; if phase sequence reversal or phase loss occurs, the system locks the power supply and alarms to prevent damage to the compressor, fan, and other core components caused by incorrect power supply. Short circuit & leakage/surge protection: Configured with high-sensitivity short circuit breakers to quickly cut off power in case of line short circuits, avoiding electrical fires or component burnout. Equipped with leakage circuit breakers and RC electronic surge protectors to prevent electric shock hazards caused by equipment leakage and suppress voltage surges from the power grid, protecting the control system and electronic components. Sensor self-detection: Real-time self-inspection of temperature, humidity, and other key sensors. If a sensor malfunctions (e.g., signal loss, inaccurate measurement), the system immediately alarms and switches to backup sensor data (if equipped) or pauses operation to ensure the reliability of test data and prevent misoperation due to false sensor signals. Dry heating protection (humidity water circuit): For the humidity water circuit and humidifier, a dedicated dry heating protection device monitors the water level and heating status. If the humidifier heats without water, the protection system cuts off the heating power immediately to avoid humidifier burnout and extend the service life of the humidity system. Expandable protection: Reserved 2 fault detection input interfaces, supporting customized addition of special protection modules (e.g., gas leakage protection for flammable/explosive test samples, pressure protection for sealed test chambers) to meet the safety requirements of industry-specific test scenarios. These multi-layered, redundant, and configurable protection mechanisms form a comprehensive safety barrier for test chambers. Whether in routine reliability testing or extreme environmental simulations, they ensure the equipment operates stably and reliably, while maximally safeguarding the safety of operators, test samples, and the equipment itself—becoming a key guarantee for the accuracy of test results and long-term operational efficiency.
    और पढ़ें
  • Energy-Saving Environmental Test Chamber: Safeguard Your Long-Term Product Costs
    Dec 01, 2025
    For enterprises in manufacturing, electronic technology, and related industries, product reliability testing is a critical quality assurance link. However, the operational costs of environmental test chambers—core testing equipment—are often overlooked. Many businesses focus solely on testing precision during procurement, only to be troubled by high energy bills in long-term use. Our energy-saving environmental test chamber effectively resolves the conflict between "accurate testing" and "cost control," providing comprehensive support for product lifecycle cost management. Core Energy-Saving Feature: Intelligent Refrigeration System Regulation As the primary energy-consuming component of environmental test chambers, the energy regulation technology of the refrigeration system directly determines the equipment’s energy efficiency. On the premise of meeting core technical indicators, this test chamber innovatively integrates multiple energy adjustment measures to achieve intelligent dynamic control of refrigeration capacity. The system precisely regulates evaporation temperature via the controller and links it with a hot gas bypass energy adjustment mechanism, matching refrigeration demand in real time based on the required cooling rate and target temperature range. When approaching the set low temperature, the system automatically reduces refrigeration capacity to avoid temperature overshoot—a common issue in traditional models—ensuring test stability. During the constant temperature phase, it abandons the energy-intensive "hot-cold balance" mode, optimizing energy utilization at the source. Verified in real operating conditions, the energy-saving effect reaches up to 30%, significantly reducing long-term operational costs, especially for enterprises requiring 24/7 continuous operation. Precision & Energy Efficiency: Optimized Heating System Power Control Refined control of the heating system further enhances the equipment’s energy-saving advantages and temperature control precision. The system adopts a synergistic control scheme of temperature controllers and thyristors: the temperature controller collects real-time temperature signals and issues control commands, while thyristors precisely adjust the heater’s power output. When the temperature is far below the set value, thyristors deliver full power for rapid heating. As the temperature gradually approaches the set value, the output power decreases incrementally; once the target temperature is reached, power output stops immediately. This on-demand power distribution mode eliminates energy waste and ensures precise temperature control, providing a stable and reliable temperature environment for tests. For example: When the internal temperature is significantly lower than the set value, thyristors operate at full power, and the heater runs at maximum load to ensure rapid temperature rise. As the temperature nears the target, the thyristor’s output power gradually decreases. Once the target temperature is achieved, the thyristor stops power output immediately, and the heater enters standby mode. This "on-demand power supply" mode eliminates the drawback of "frequent start-stop" in traditional heating systems—avoiding ineffective energy consumption while greatly improving temperature control precision, making it particularly suitable for test scenarios requiring high temperature stability. Dual-System Synergy: Safeguard Enterprise Costs From the refrigeration system’s intelligent energy adjustment to the heating system’s precision power control, our environmental test chamber centers on dual-system collaborative energy-saving technology. While ensuring accurate test data, it maximizes energy cost reduction. Choosing our test chamber not only guarantees product testing quality but also enables scientific management of enterprise operational costs, providing peace of mind throughout your product R&D and production processes. In addition, if your enterprise is seeking a cost-effective environmental test chamber or struggling with high energy consumption from existing equipment, we recommend focusing on our energy-saving model. Let professional equipment protect your product quality while reducing costs and enhancing efficiency for your business.
    और पढ़ें
  • Got Your Temperature Test Chamber? Here’s What You Must Do Next!
    Nov 28, 2025
    I. Receipt Inspection  1. Physical Verification Confirm equipment model, specifications, and serial number match the contract/packing list to avoid wrong delivery. Inspect the cabinet, door, and control panel for transportation damage (dents, deformation) and ensure pipelines/wiring are intact without loosening. 2. Accessory & Document Check Required accessories: Power cord, sample shelves, sealing rings, wrenches, and other tools (verify against the packing list). Technical documents: Operation/maintenance manual, calibration certificate, warranty card, and qualification certificate (all mandatory for after-sales service). 3. Abnormal Handling In case of damage or missing items: Immediately take photos (overall equipment, damaged details, packing list), notify the supplier within 24 hours to submit a claim, and sign the "Acceptance Objection Form" for documentation. II. Installation & Deployment (Compliant Installation Ensures Performance) 1. Environment Requirements (Must Meet the Following) Floor: Flat and sturdy, with load-bearing capacity ≥1.2 times the equipment weight (to avoid test errors caused by vibration). Space: ≥30cm ventilation gap around the cabinet; keep away from heat sources, water sources, dust, and strong electromagnetic interference. Power supply: Match the rated voltage (e.g., 380V three-phase five-wire/220V single-phase), grounding resistance ≤4Ω, and equip an independent air switch (power ≥1.2 times the equipment's rated power). Environment: Room temperature 15-35℃, humidity ≤85%RH (no condensation); water-cooled models require pre-connected cooling water circuits meeting specifications. 2. Basic Installation Steps Level the equipment: Adjust anchor bolts and use a level to confirm horizontal alignment (to prevent uneven stress on the refrigeration system). Wiring inspection: Connect the power supply per the manual and ensure correct neutral/grounding connections (a common cause of electrical failures). Consumable check: Confirm refrigerant and lubricating oil (if applicable) are properly filled with no leakage. III. Commissioning (Core: Verify Performance Compliance) 1. First Startup Procedure (1) Recheck power/pipeline connections before power-on; switch on after confirmation. (2)Panel self-test: Ensure the display shows no error codes and buttons/indicators function normally. (3)No-load operation (2-4 hours): Set a common temperature range (e.g., -40℃~85℃) and monitor temperature fluctuation ≤±0.5℃ (meets industrial standards). Check door sealing (no obvious air leakage), operating noise ≤75dB, and normal start/stop of refrigeration/heating systems. 2. Load Verification (Simulate Actual Usage) Place a load equivalent to the test sample (weight/volume ≤80% of the equipment's rated load) without blocking air ducts. Set the target temperature and holding time; record if the heating/cooling rate meets technical parameters (e.g., -40℃~85℃ heating time ≤60 minutes). Alarm test: Simulate power failure, over-temperature, or door-open timeout to confirm timely alarm response (audio-visual alarm + shutdown protection). IV. Emergency Handling & After-Sales Coordination 1. Common Fault Resolution Error codes: Refer to the "Troubleshooting" section in the manual (e.g., E1=Over-temperature, E2=Power abnormality). Sudden failures: (e.g., electric leakage, abnormal noise, refrigeration failure) Immediately cut off power, stop use, and contact the supplier's technical support (do not disassemble independently). 2. After-Sales Support Retain the supplier's after-sales contact (phone + email) and confirm the warranty period (usually 1 year for the whole machine). Maintenance records: Request a "Maintenance Report" after each service and file it for future tracing.
    और पढ़ें
  • Key Differences in Using Environmental Test Chambers Between Summer and Winter
    Nov 26, 2025
    The core difference lies in the impact of ambient temperature and humidity variations on equipment operating efficiency, energy consumption, and test accuracy. Targeted measures for temperature/humidity control, heat dissipation/anti-freezing, and maintenance are required. Specific differences and precautions are as follows: I. Core Difference Comparison Table Dimension Summer Operation Characteristics Winter Operation Characteristics Ambient Conditions High temperature & high humidity (room temp: 30-40℃, RH: 60%-90%) Low temperature & low humidity (room temp: 0-15℃, RH: 30%-60%) Equipment Load High refrigeration system load, prone to overload High heating system load; humidification compensation required for certain models (e.g., temperature-humidity chambers) Impact on Test Accuracy High humidity causes condensation, affecting sensor accuracy Low temperature leads to pipeline freezing; low humidity may reduce stability of humidity tests Energy Consumption High refrigeration energy consumption High heating/humidification energy consumption   II. Season-Specific Precautions (1) Summer Operation: Focus on High Temperature/High Humidity/Overload Prevention 1. Ambient Heat Dissipation Management Reserve ≥50cm ventilation space around the chamber; avoid direct sunlight or proximity to heat sources (e.g., workshop ovens, air conditioner outlets). Ensure laboratory air conditioning operates normally, maintaining room temperature at 25-30℃. If room temp exceeds 35℃, install industrial fans or cooling devices to assist heat dissipation and prevent refrigeration system overload protection triggered by high ambient temperatures. 2. Moisture & Condensation Control Regularly clean chamber door gaskets with a dry cloth to prevent sealant aging and air leakage caused by high humidity. After humidity tests, open the chamber door promptly for ventilation and wipe off condensation to avoid moisture damage to sensors (e.g., humidity sensors). 3. Equipment Operation Protection Avoid prolonged continuous operation of extreme low-temperature tests (e.g., below -40℃). Recommend shutting down for 1 hour after 8 hours of operation to protect the compressor. Periodically inspect refrigeration system radiators (condensers) and remove dust/debris (blow with compressed air monthly) to ensure heat dissipation efficiency. (2) Winter Operation: Focus on Anti-Freezing/Low Humidity/Startup Failure Prevention 1. Ambient Temperature Guarantee Maintain laboratory temperature above 5℃ (strictly follow 10℃ if specified as the minimum operating temperature) to prevent pipeline freezing (e.g., refrigeration capillaries, humidification pipes). For unheated laboratories, install an insulation cover (with ventilation holes reserved) or activate the "preheating mode" (if supported) before testing. 2. Humidification System Maintenance Use distilled water in the humidification tank to avoid pipe blockage from impurity crystallization at low temperatures. Drain water from the humidification tank and pipelines during long-term non-use to prevent freezing-induced component damage. 3. Startup & Operation Specifications In low-temperature environments, activate "standby mode" for 30 minutes preheating before setting test parameters to avoid compressor burnout from excessive startup load. If startup fails (e.g., compressor inactivity), check power voltage (prone to instability during winter peak hours) or contact after-sales to inspect pipeline freezing. 4. Low Humidity Compensation For low-humidity tests (e.g., ≤30% RH), winter dryness may cause rapid humidity. Adjust humidification frequency appropriately and use the "humidity calibration" function to reduce fluctuations. III. General Precautions (All Seasons) Calibrate temperature/humidity sensors quarterly to ensure data accuracy. Clean air filters monthly to maintain airflow circulation. Arrange test samples evenly to avoid blocking internal air ducts and ensure temperature/humidity uniformity. For long-term non-use: Run the chamber for 1 hour monthly in summer (moisture prevention) and drain pipeline water in winter (freezing prevention). By addressing seasonal environmental variations, equipment service life can be extended, and test failures caused by temperature/humidity fluctuations avoided—aligning with the high precision and stability requirements of the industrial test equipment industry.    
    और पढ़ें
  • Differences Between High-Low Temperature Test Chamber and Thermal Shock Chamber
    Nov 26, 2025
    In industrial product reliability testing, high and low temperature test chambers and temperature shock test chambers are core environmental testing equipment, both simulating extreme temperatures to verify product durability. However, they differ fundamentally: the former focuses on gradual temperature-humidity cycles, while the latter on instantaneous thermal shock. Clarifying these differences is key to matching test needs and ensuring data validity. 1. Rate High-Low Temperature Test Chamber: Slow, with a regular rate of 0.7∼1 ℃/min, and rapid versions can reach 5∼15 ℃/min. Thermal Shock Chamber: Abrupt, with instant switching. 2. Structure High-Low Temperature Test Chamber: Single-chamber structure, integrating heating, refrigeration, and humidification functions. Thermal Shock Chamber: Multi-chamber structure, including high-temperature chamber, low-temperature chamber, and test chamber. 3. Temperature Continuity High-Low Temperature Test Chamber: The temperature changes smoothly without any "shock sensation". Thermal Shock Chamber: The temperature changes by leaps and bounds, with a common temperature range of −40∼150℃. 4. Application High-Low Temperature Test Chamber: Suitable for temperature endurance testing of general products such as electronic devices, household appliances, and building materials. Thermal Shock Chamber: Suitable for shock resistance testing of temperature-sensitive products such as automotive electronics, semiconductors, and aerospace components. 5. Core Position & Test Purpose High-Low Temperature Test Chamber: Simulates gradual temperature (and humidity) changes to test product stability under slow thermal variation (e.g., electronic devices’ performance after gradual cooling to -40℃ or heating to 85℃). Thermal Shock Chamber: Simulates abrupt temperature switching (≤30s transition) to test product resistance to extreme thermal shock (e.g., auto parts adapting to drastic day-night temperature changes, aerospace components’ tolerance to sudden high-low temperature shifts). Summary The high and low temperature test chamber is a "slow-paced endurance test", while the temperature shock chamber is a "fast-paced explosive power challenge". Just based on whether the product will encounter "sudden cold and heat" in the actual usage scenario, the precise selection can be made.
    और पढ़ें
  • What should we pay attention to when using a thermal shock test chamber (water-cooled)?
    Nov 22, 2025
    I. Before Operation Use deionized water or distilled water as cooling water (to prevent scale formation); control temperature at 15-30℃, pressure at 0.15-0.3MPa, flow rate ≥5L/min. Clean the Y-type filter element in advance to ensure unobstructed water flow. Inspect water supply/drainage pipelines for secure connections, no leakage or kinking; keep drainage ports unobstructed with a height difference ≥10cm. Ensure the environment is ventilated and dry, grounding resistance ≤4Ω, and power supply (AC380V±10%) stable. Keep the inner chamber and shelves clean. Sample volume ≤1/3 of effective capacity, with weight evenly distributed on shelves. Seal moisture-sensitive parts of non-hermetic samples to avoid condensation affecting test accuracy. II. During Operation Real-time monitor cooling water pressure, flow rate and temperature. Immediately shut down for troubleshooting (pipeline blockage, leakage or chiller failure) if pressure drops sharply, flow is insufficient or temperature exceeds 35℃. Set high/low temperature parameters per GB/T, IEC and other standards (not exceeding rated range); control heating/cooling rate ≤5℃/min. Prohibit instantaneous switching between extreme temperatures. Do not open the door arbitrarily during operation (to prevent scalding/frostbite from hot/cold air). Use protective gloves for emergency sample handling. Shut down immediately for maintenance upon alarm (overtemperature, water shortage, etc.); prohibit forced operation. III. After Test Turn off power and cooling water inlet/outlet valves; drain residual water in pipelines. Clean the water tank and replace water monthly; add special water stabilizer to extend pipeline service life. Wipe the inner chamber and shelves after temperature returns to room temperature. Clean the air filter (1-2 times monthly); inspect pipeline seals and replace aging/leaking ones promptly. For long-term non-use: Power on and run for 30 minutes monthly (including water cooling system circulation), inject anti-rust protection fluid into pipelines, and cover the equipment with a dust cover in a dry, ventilated place. IV. Prohibitions Prohibit using unqualified water (tap water, well water, etc.) or blocking filters/drainage ports (to avoid affecting heat dissipation). Prohibit overloading samples or unauthorized disassembly/modification of water cooling pipelines/core components. Repairs must be performed by professionals. Prohibit frequent start-stop (wait ≥5 minutes after shutdown before restarting). Prohibit placing flammable, explosive or corrosive substances.
    और पढ़ें
  • Differences between High and Low Temperature Test Chamber and Constant Temperature Test Chamber
    Nov 13, 2025
        In environmental reliability testing, high-low temperature humidity test chambers and constant temperature and humidity test chambers are easily confused due to similar names, but they differ significantly in testing capabilities, applications and technical characteristics. Accurate distinction and selection are key to ensuring valid test data. This blog will analyze the core differences and provide selection suggestions. I. Core Definition: Essential Distinction of Functional Boundaries     The core difference between the two starts with functional positioning, which directly determines the applicable scenarios.     The core of the constant temperature and humidity test chamber is "maintaining stability". It can accurately control and maintain the set temperature and humidity for a long time, and is used to simulate the long-term performance of products in specific environments, such as electronic component stability testing and textile temperature-humidity sensitivity testing. Its core requirement is "steady-state environmental performance verification".     The high-low temperature humidity test chamber focuses on "dynamic simulation". In addition to precise temperature and humidity control, it has a wide-range fluctuation capability, which can simulate environments such as high-low temperature cycles and alternating humidity and heat, such as extreme temperature differences during product transportation and diurnal temperature-humidity changes of outdoor equipment. Its core requirement is "dynamic environmental reliability verification". II. Key Differences: Multi-dimensional Analysis from Technology to Application 1. Temperature and Humidity Range and Fluctuation Capacity     The constant temperature and humidity chamber has a mild temperature and humidity range (temperature 0℃-100℃, humidity 30%-95%RH) and high control precision (temperature fluctuation ±0.5℃, humidity ±2%RH), but no extreme temperature-humidity impact capability.     The high-low temperature humidity chamber has a wider temperature and humidity coverage (temperature -70℃~200℃, humidity 10%-98%RH) and rapid change capability (heating rate 3℃/min-15℃/min, cooling rate 1℃/min-10℃/min), which can realize rapid cycle switching between "high temperature and high humidity - low temperature and low humidity"—a feature unavailable in the former. 2. Differences in Core Technical Architecture     The constant temperature and humidity chamber adopts single-stage compression refrigeration, conventional resistance heating, and steam or ultrasonic humidification. Its system design focuses on "energy saving and stability", with simple structure and low operating cost.     To meet extreme needs, the high-low temperature humidity chamber uses cascade refrigeration, rapid-heating tubes, and its humidity system includes a fast-response dehumidification module, with a thicker insulation layer on the chamber wall. Its technical complexity and manufacturing cost are much higher than the former. 3. Applicable Scenarios and Testing Purposes     The constant temperature and humidity chamber is used for steady-state environmental adaptability testing, such as electronic component aging and pharmaceutical storage simulation, to verify the performance consistency and durability of products in a fixed environment.     The high-low temperature humidity chamber focuses on dynamic reliability testing, such as high-low temperature cycling of auto parts and extreme environment simulation of aerospace products, to expose product defects (material aging, structural deformation, etc.) under drastic environmental changes.     In summary, the constant temperature and humidity chamber guards the steady-state environment, while the high-low temperature humidity chamber challenges the dynamic environment. There is no absolute advantage or disadvantage between the two. Only by matching needs, clarifying scenarios and budgets can the test truly guarantee product quality.
    और पढ़ें
  • Lab Two-Chamber Thermal Shock Chamber
    Nov 03, 2025
    The two-chamber thermal shock chamber is a highly reliable environmental testing device specifically designed for evaluating the ability of products to withstand extreme temperature changes. It simulates harsh temperature shock conditions to rapidly expose the possible failures of materials, electronic components, automotive parts and aerospace equipment during rapid thermal expansion and contraction, such as cracking, performance degradation and connection faults. It is a key tool for improving product quality and reliability. The core design concept of this device lies in efficiency and harshness. It has two independently controlled test chambers inside: a high-temperature chamber and a low-temperature chamber, which are respectively maintained at the set extreme temperatures continuously. The sample to be tested is placed in an automatic mechanical basket. During the test, the basket will be rapidly switched between the high-temperature zone and the low-temperature zone under the program control, instantly exposing the sample to a huge temperature difference environment, thus achieving the true "thermal shock" effect. Compared with another mainstream three-chamber (static) impact chamber, the significant advantage of the two-chamber type lies in its extremely fast temperature conversion speed and short temperature recovery time, ensuring the strictness and consistency of the test conditions. It is highly suitable for testing samples with sturdy structures that can withstand mechanical movement, and the testing efficiency is extremely high. Its working principle determines that during the testing process, the temperature fluctuation of the high and low temperature chamber is small, it can quickly return to the set point, and is not significantly affected by the sample load. This equipment is widely used in fields such as semiconductors, integrated circuits, national defense science and technology, automotive electronics, and new material research and development, for conducting reliability tests as required by various international standards. Its main technical parameters include a wide temperature range (high temperatures up to +150°C to +200°C, low temperatures down to -40°C to -65°C or even lower), precise temperature control accuracy, and customizable sample area sizes. The Lab two-chamber thermal shock chamber, with its irreplaceable rapid temperature change capability, has become the ultimate touchstone for testing the adaptability and durability of products in extreme temperature environments, providing a strong guarantee for the precision manufacturing and reliability verification of modern industry.
    और पढ़ें
  • Dragon Heat Flow Meter Temperature Control Test
    Oct 29, 2025
    Temperature control tests are usually conducted under two conditions: no-load (without sample placement) and load (with standard samples or actual samples being tested placed). The basic testing steps are as follows:   1. Preparatory work: Ensure that the heat flow meter has been fully preheated and is in a stable state. Prepare high-precision temperature sensors that have undergone metrological calibration (such as multiple platinum resistance PT100), and their accuracy should be much higher than the claimed indicators of the heat flow meter to be measured. 2. Temperature uniformity test: Multiple calibrated temperature sensors are arranged at different positions within the working area of the heat flow meter's heating plate (such as the center, four corners, edges, etc.). Set one or more typical test temperature points (such as -20°C, 25°C, 80°C). After the system reaches thermal stability, simultaneously record the temperature values of all sensors. Calculate the maximum, minimum and standard deviation of these readings to evaluate the uniformity. 3. Temperature control stability and accuracy test: Fix a calibrated temperature sensor at the center of the heating plate (or closely attach it to the built-in sensor of the instrument). Set the target temperature and start the temperature control. Record the entire process from the start to reaching the target temperature (for analyzing response speed and overshoot). After reaching the target temperature, continuously record for at least 1-2 hours (or as per standard requirements), with a sampling frequency high enough (such as once per second), and analyze the recorded data. 4. Load test: Place standard reference materials with known thermal physical properties or typical samples to be tested between the hot plates. Repeat step 3 and observe the changes in temperature control performance under load conditions. Load will directly affect the thermal inertia of the system, thereby influencing the response speed and stability.   When you are choosing or using a heat flow meter, be sure to carefully review the specific parameters regarding temperature control performance in its technical specification sheet and understand under what conditions (no-load/load) these parameters were measured. Lab will provide clear and verifiable temperature control test data and reports.
    और पढ़ें
  • How is over-temperature protection carried out in a temperature test chamber?
    Oct 23, 2025
    The over-temperature protection of the temperature test chamber is a multi-level and multi-redundant safety system. Its core purpose is to prevent the temperature inside the chamber from rising out of control due to equipment failure, thereby protecting the safety of the test samples, the test chamber itself and the laboratory environment.   The protection system usually consists of the following key parts working together: 1. Sensor: The main sensor is used for the normal temperature control of the test chamber and provides feedback signals to the main controller. An independent over-temperature protection sensor is the key to a safety system. It is a temperature-sensing element independent of the main control temperature system (usually a platinum resistance or thermocouple), which is placed by strategically at the position within the box that best represents the risk of overheating (such as near the heater outlet or on the top of the working chamber). Its sole task is to monitor over-temperature. 2. Processing unit: The main controller receives signals from the main sensor and executes the set temperature program. The independent over-temperature protector, as an independent hardware device, is specifically designed to receive and process the signals from the over-temperature protection sensor. It does not rely on the main controller. Even if the main controller crashes or experiences a serious malfunction, it can still operate normally. 3. Actuator: The main controller controls the on and off of the heater and the cooler. The safety relay/solid-state relay receives the signal sent by the over-temperature protector and directly cuts off the power supply circuit of the heater. This is the final execution action.   The over-temperature protection of the temperature test chamber is a multi-level, hard-wire connected safety system designed based on the concepts of "redundancy" and "independence". It does not rely on the main control system. Through independent sensors and controllers, when a dangerous temperature is detected, it directly and forcibly cuts off the heating energy and notifies the user through sound and light alarms, thus forming a complete and reliable safety closed loop.
    और पढ़ें
1 2 3 4 5 6
कुल6पृष्ठों

एक संदेश छोड़ें

एक संदेश छोड़ें
यदि आप हमारे उत्पादों में रुचि रखते हैं और अधिक जानकारी जानना चाहते हैं, तो कृपया यहां एक संदेश छोड़ दें, हम जितनी जल्दी हो सके आपको जवाब देंगे।
जमा करना

घर

उत्पादों

Whatsapp

हमसे संपर्क करें