निरंतर तापमान और आर्द्रता परीक्षण कक्षों की छह प्रमुख रूपरेखा संरचनाएं और परिचालन सिद्धांत
Mar 13, 2025
प्रशीतन प्रणालीप्रशीतन प्रणाली एक महत्वपूर्ण घटक है व्यापक परीक्षण कक्षआम तौर पर, प्रशीतन विधियों में यांत्रिक प्रशीतन और सहायक तरल नाइट्रोजन प्रशीतन शामिल हैं। यांत्रिक प्रशीतन वाष्प संपीड़न चक्र का उपयोग करता है, जिसमें मुख्य रूप से एक कंप्रेसर, कंडेनसर, थ्रॉटल तंत्र और बाष्पित्र शामिल होते हैं। यदि आवश्यक कम तापमान -55 डिग्री सेल्सियस तक पहुँच जाता है, तो एकल-चरण प्रशीतन अपर्याप्त है। इसलिए, लैबकंपैनियन के निरंतर तापमान और आर्द्रता कक्ष आमतौर पर एक कैस्केड प्रशीतन प्रणाली का उपयोग करते हैं। प्रशीतन प्रणाली को दो भागों में विभाजित किया जाता है: उच्च तापमान खंड और निम्न तापमान खंड, जिनमें से प्रत्येक एक अपेक्षाकृत स्वतंत्र प्रशीतन प्रणाली है। उच्च तापमान खंड में, रेफ्रिजरेंट वाष्पित हो जाता है और निम्न तापमान खंड के रेफ्रिजरेंट से गर्मी को अवशोषित करता है, जिससे यह वाष्पीकृत हो जाता है। निम्न तापमान खंड में, रेफ्रिजरेंट वाष्पित हो जाता है और शीतलन प्राप्त करने के लिए कक्ष के अंदर हवा से गर्मी को अवशोषित करता है। उच्च तापमान और निम्न तापमान वाले खंड एक वाष्पीकरण संघनित्र द्वारा जुड़े होते हैं, जो उच्च तापमान वाले खंड के लिए संघनित्र और निम्न तापमान वाले खंड के लिए वाष्पीकरणकर्ता के रूप में कार्य करता है। तापन प्रणालीपरीक्षण कक्ष की हीटिंग प्रणाली प्रशीतन प्रणाली की तुलना में अपेक्षाकृत सरल है। इसमें मुख्य रूप से उच्च शक्ति प्रतिरोध तार होते हैं। परीक्षण कक्ष द्वारा आवश्यक उच्च ताप दर के कारण, हीटिंग सिस्टम को महत्वपूर्ण शक्ति के साथ डिज़ाइन किया गया है, और कक्ष की आधार प्लेट पर हीटर भी लगाए गए हैं। नियंत्रण प्रणालीनियंत्रण प्रणाली व्यापक परीक्षण कक्ष का मूल है, जो हीटिंग दर और परिशुद्धता जैसे महत्वपूर्ण संकेतकों का निर्धारण करती है। अधिकांश आधुनिक परीक्षण कक्ष PID नियंत्रकों का उपयोग करते हैं, जबकि कुछ PID और फ़ज़ी नियंत्रण के संयोजन का उपयोग करते हैं। चूंकि नियंत्रण प्रणाली मुख्य रूप से सॉफ़्टवेयर पर आधारित है, इसलिए यह आमतौर पर उपयोग के दौरान बिना किसी समस्या के संचालित होती है। आर्द्रता प्रणालीआर्द्रता प्रणाली को दो उप-प्रणालियों में विभाजित किया गया है: आर्द्रीकरण और निरार्द्रीकरण। आर्द्रीकरण आमतौर पर भाप इंजेक्शन के माध्यम से प्राप्त किया जाता है, जहां कम दबाव वाली भाप को सीधे परीक्षण स्थान में पेश किया जाता है। यह विधि मजबूत आर्द्रीकरण क्षमता, तीव्र प्रतिक्रिया और सटीक नियंत्रण प्रदान करती है, विशेष रूप से शीतलन प्रक्रियाओं के दौरान जहां मजबूर आर्द्रीकरण आवश्यक है। डीह्यूमिडिफिकेशन दो तरीकों से प्राप्त किया जा सकता है: यांत्रिक प्रशीतन और डेसीकेंट डीह्यूमिडिफिकेशन। यांत्रिक प्रशीतन डीह्यूमिडिफिकेशन हवा को उसके ओस बिंदु से नीचे ठंडा करके काम करता है, जिससे अतिरिक्त नमी संघनित हो जाती है और इस प्रकार आर्द्रता कम हो जाती है। डेसीकेंट डीह्यूमिडिफिकेशन में कक्ष से हवा को बाहर निकालना, शुष्क हवा को इंजेक्ट करना और नमी वाली हवा को कक्ष में फिर से डालने से पहले सुखाने के लिए डेसीकेंट के माध्यम से रिसाइकिल करना शामिल है। अधिकांश व्यापक परीक्षण कक्ष पूर्व विधि का उपयोग करते हैं, जबकि बाद वाला 0°C से नीचे ओस बिंदु की आवश्यकता वाले विशेष अनुप्रयोगों के लिए आरक्षित है, हालांकि इसकी लागत अधिक है। सेंसरसेंसर में मुख्य रूप से तापमान और आर्द्रता सेंसर शामिल हैं। प्लैटिनम प्रतिरोध थर्मामीटर और थर्मोकपल का उपयोग आमतौर पर तापमान माप के लिए किया जाता है। आर्द्रता माप विधियों में ड्राई-वेट बल्ब थर्मामीटर और सॉलिड-स्टेट इलेक्ट्रॉनिक सेंसर शामिल हैं। ड्राई-वेट बल्ब विधि की कम सटीकता के कारण, सॉलिड-स्टेट सेंसर आधुनिक निरंतर तापमान और आर्द्रता कक्षों में तेजी से इसकी जगह ले रहे हैं। वायु परिसंचरण प्रणालीवायु परिसंचरण प्रणाली में आम तौर पर एक केन्द्रापसारक पंखा और एक मोटर होती है जो इसे चलाती है। यह प्रणाली परीक्षण कक्ष के भीतर हवा के निरंतर संचलन को सुनिश्चित करती है, जिससे तापमान और आर्द्रता का वितरण एक समान बना रहता है।
और पढ़ें